You are here:
Center for Stroke Research Berlin and Department of Experimental Neurology; Scientific Director Charité Core Facility "7T experimentelle MRTs"
CCM: Campus Charité Mitte

Profile
Research Group Boehm-Sturm mainly focuses on quantitative MRI. Using biophysical models, quantitative MRI establishes a link between measured MRI parameters (e.g. change of water diffusion after a stroke) and important biological parameters (e.g. cellular swelling) to increase the validity of the MRI for stroke diagnosis, but also for therapy evaluation. Imaging allows noninvasive acquisition of data on the living animal and therefore contributes to implementing the 3R (Replace, Reduce, Refine) in animal experiments. Philipp Boehm-Sturm is head of the technology platform "ExPerimental Imaging" at Charité (EPIC3R) within Charité 3R, which aims to improve the preclinical imaging infrastructure at Charité.
Selected publications
Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria.
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G.
Nat Commun. 2024 Mar 16;15(1):2396. doi: 10.1038/s41467-024-46617-w.
PMID: 38493187; PMCID: PMC10944460.
Prediction of Stroke Outcome in Mice Based on Noninvasive MRI and Behavioral Testing. Stroke.
Knab F, Koch SP, Major S, Farr TD, Mueller S, Euskirchen P, Eggers M, Kuffner MTC, Walter J, Berchtold D, Knauss S, Dreier JP, Meisel A, Endres M, Dirnagl U, Wenger N, Hoffmann CJ, Boehm-Sturm P, Harms C.
2023 Nov;54(11):2895-2905. doi: 10.1161/STROKEAHA.123.043897. Epub 2023 Sep 25.
PMID: 37746704; PMCID: PMC10589430.
Intersectin deficiency impairs cortico-striatal neurotransmission and causes obsessive-compulsive behaviors in mice.
Vollweiter D, Shergill JK, Hilse A, Kochlamazashvili G, Koch SP, Mueller S, Boehm-Sturm P, Haucke V, Maritzen T.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2304323120. doi: 10.1073/pnas.2304323120. Epub 2023 Aug 21.
PMID: 37603735; PMCID: PMC10469033.
Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images.
An J, Wendt L, Wiese G, Herold T, Rzepka N, Mueller S, Koch SP, Hoffmann CJ, Harms C, Boehm-Sturm P.
Sci Rep. 2023 Aug 16;13(1):13341. doi: 10.1038/s41598-023-39826-8.
PMID: 37587160; PMCID: PMC10432383.
Long-Term Connectome Analysis Reveals Reshaping of Visual, Spatial Networks in a Model With Vascular Dementia Features.
Hall GR, Boehm-Sturm P, Dirnagl U, Finke C, Foddis M, Harms C, Koch SP, Kuchling J, Madan CR, Mueller S, Sassi C, Sotiropoulos SN, Trueman RC, Wallis MD, Yildirim F, Farr TD.
Stroke. 2022 May;53(5):1735-1745. doi: 10.1161/STROKEAHA.121.036997. Epub 2022 Feb 2.
PMID: 35105183; PMCID: PMC9022688
Phenotyping placental oxygenation in Lgals1 deficient mice using 19F MRI.
Boehm-Sturm P, Mueller S, Freitag N, Borowski S, Foddis M, Koch SP, Temme S, Flögel U, Blois SM.
Sci Rep. 2021 Jan 22;11(1):2126. doi: 10.1038/s41598-020-80408-9.
PMID: 33483548; PMCID: PMC7822814
Seasonal plasticity in the adult somatosensory cortex.
Ray S, Li M, Koch SP, Mueller S, Boehm-Sturm P, Wang H, Brecht M, Naumann RK.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):32136-32144. doi: 10.1073/pnas.1922888117. Epub 2020 Nov 30.
PMID: 33257560; PMCID: PMC7749348
Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil.
Khalil AA, Mueller S, Foddis M, Mosch L, Lips J, Przesdzing I, Temme S, Flögel U, Dirnagl U, Boehm-Sturm P.
MAGMA. 2019 Feb;32(1):105-114. doi: 10.1007/s10334-018-0712-x. Epub 2018 Nov 12.
PMID: 30421249
Atlas registration for edema-corrected MRI lesion volume in mouse stroke models.
Koch S, Mueller S, Foddis M, Bienert T, von Elverfeldt D, Knab F, Farr TD, Bernard R, Dopatka M, Rex A, Dirnagl U, Harms C, Boehm-Sturm P.
J Cereb Blood Flow Metab. 2017 Jan 1:271678X17726635. doi: 10.1177/0271678X17726635. [Epub ahead of print]
PMID: 28829217
Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.
Boehm-Sturm P, Haeckel A, Hauptmann R, Mueller S, Kuhl CK, Schellenberger EA.
Radiology. 2018 Feb;286(2):537-546. doi: 10.1148/radiol.2017170116. Epub 2017 Sep 7.
PMID: 28880786
Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment.
Boehm-Sturm P, Füchtemeier M, Foddis M, Mueller S, Trueman RC, Zille M, Rinnenthal JL, Kypraios T, Shaw L, Dirnagl U, Farr TD.
Stroke. 2017 Feb;48(2):468-475. doi: 10.1161/STROKEAHA.116.014394. Epub 2017 Jan 9.
PMID: 28070001
A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain.
Boehm-Sturm P, Aswendt M, Minassian A, Michalk S, Mengler L, Adamczak J, Mezzanotte L, Löwik C, Hoehn M.
Biomaterials. 2014 Feb;35(7):2218-26. doi: 10.1016/j.biomaterials.2013.11.085. Epub 2013 Dec 17.
PMID: 24355489
Impetus
Animal models are essential for basic biomedical stroke research. Magnetic resonance imaging (MRI) plays a major role both in clinics and in animal models, as it can spatially and temporally illustrate important biological processes in the same subject. For this purpose, the CSB has established a dedicated laboratory for MRI in small animals. Research Group Boehm-Sturm mainly focuses on quantitative MRI. Using biophysical models, these MRIs try to establish a link between measured MRI parameters (e.g. change of water diffusion after a stroke) and important biological parameters (e.g. cellular engorgement) to increase the validity of the MRI for stroke diagnosis, but also for therapy evaluation.
Most important projects
MRI of recovery after stroke
The aim is to study several neuroprotective therapies using quantitative MRI in animal models.
The methods developed in this respect include:
- Measurement of morphological changes in the brain using atlas registration (voxel-/deformation-based morphometry)
- Mapping behavioural data onto imaging data, e.g. lesion-symptom mapping, to explore the structural causes of recovery after stroke
- Measurement of tissue oxygen saturation using 19F MRI
- Measurement of changes in the structural and functional connectivity using DTI and resting state MRI
MRI of vascular function
The aim is to characterise the blood flow and vascular changes in animal models after a stroke using contrast-enhanced MRI (high-resolution angiography and DCE MRI). Investigations include the effects of therapies that stimulate vascular growth on the blood-brain barrier, cerebral blood flow and vascular density.
New contrast agents for MRI
We use animal models of stroke to investigate, for example:
- Iron-based contrast agents for DCE MRI with a potentially improved long-term toxicity as an alternative to gadolinium-based contrast agents
- Calcium-sensitive contrast agents for functional MRI
- Iron oxide- and fluorine 19-based contrast agents to show inflammation
Service Project in collaborative research center TRR 295 ReTune – Retuning dynamic motor network disorders using neuromodulation
The goal of this Service Project is to develop a software toolbox that allows us to translate neuromodulation research e.g. deep brain stimulation from animal models to clinical findings.
Further projects
- "IMatrix": Theragnostic targeting of extracellular matrix metalloproteinases and blood brain barrier disruption in subacute ischemic stroke
- MR Biomarker of Noise-Induced Hearing Loss – Investigation of Neurodegeneration, Connectivity and Neurotransmitter Metabolism in the Central Auditory System of the Mouse
- "EPIC-3R": Experimental and Preclinical Imaging Cluster to Support 3R in Basic and Translational Research at Charité
- "Strokevision": deep learning based segmentation of stroke lesions on MR images