Meta menu:

From here, you can access the Emergencies page, Contact Us page, Accessibility Settings, Language Selection, and Search page.

Open Menu
Alte Nervenklinik Campus Charité Mitte

Research Group Boehm-Sturm

  • Experimental Neurology
  • Experimental Magnetic Resonance Imaging

 

 

 

You are here:

Prof. Dr. rer. nat. Philipp Boehm-Sturm

Center for Stroke Research Berlin and Department of Experimental Neurology; Scientific Director Charité Core Facility "7T experimentelle MRTs"

CCM: Campus Charité Mitte

Portrait of Prof. Dr. rer. nat. Philipp Boehm-Sturm

Profile

Research Group Boehm-Sturm mainly focuses on quantitative MRI. Using biophysical models, quantitative MRI establishes a link between measured MRI parameters (e.g. change of water diffusion after a stroke) and important biological parameters (e.g. cellular swelling) to increase the validity of the MRI for stroke diagnosis, but also for therapy evaluation. Imaging allows noninvasive acquisition of data on the living animal and therefore contributes to implementing the 3R (Replace, Reduce, Refine) in animal experiments. Philipp Boehm-Sturm is head of the technology platform "ExPerimental Imaging" at Charité (EPIC3R) within Charité 3R, which aims to improve the preclinical imaging infrastructure at Charité.

Selected publications

Intersectin deficiency impairs cortico-striatal neurotransmission and causes obsessive-compulsive behaviors in mice.
Vollweiter D, Shergill JK, Hilse A, Kochlamazashvili G, Koch SP, Mueller S, Boehm-Sturm P, Haucke V, Maritzen T.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2304323120. doi: 10.1073/pnas.2304323120. Epub 2023 Aug 21.
PMID: 37603735; PMCID: PMC10469033.

Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images.
An J, Wendt L, Wiese G, Herold T, Rzepka N, Mueller S, Koch SP, Hoffmann CJ, Harms C, Boehm-Sturm P.
Sci Rep. 2023 Aug 16;13(1):13341. doi: 10.1038/s41598-023-39826-8.
PMID: 37587160; PMCID: PMC10432383.

Long-Term Connectome Analysis Reveals Reshaping of Visual, Spatial Networks in a Model With Vascular Dementia Features.
Hall GR, Boehm-Sturm P, Dirnagl U, Finke C, Foddis M, Harms C, Koch SP, Kuchling J, Madan CR, Mueller S, Sassi C, Sotiropoulos SN, Trueman RC, Wallis MD, Yildirim F, Farr TD.
Stroke. 2022 May;53(5):1735-1745. doi: 10.1161/STROKEAHA.121.036997. Epub 2022 Feb 2.
PMID: 35105183; PMCID: PMC9022688

Phenotyping placental oxygenation in Lgals1 deficient mice using 19F MRI.
Boehm-Sturm P, Mueller S, Freitag N, Borowski S, Foddis M, Koch SP, Temme S, Flögel U, Blois SM.
Sci Rep. 2021 Jan 22;11(1):2126. doi: 10.1038/s41598-020-80408-9.
PMID: 33483548; PMCID: PMC7822814

Seasonal plasticity in the adult somatosensory cortex.
Ray S, Li M, Koch SP, Mueller S, Boehm-Sturm P, Wang H, Brecht M, Naumann RK.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):32136-32144. doi: 10.1073/pnas.1922888117. Epub 2020 Nov 30.
PMID: 33257560; PMCID: PMC7749348

Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil.
Khalil AA, Mueller S, Foddis M, Mosch L, Lips J, Przesdzing I, Temme S, Flögel U, Dirnagl U, Boehm-Sturm P.
MAGMA. 2019 Feb;32(1):105-114. doi: 10.1007/s10334-018-0712-x. Epub 2018 Nov 12.
PMID: 30421249

Atlas registration for edema-corrected MRI lesion volume in mouse stroke models.
Koch S, Mueller S, Foddis M, Bienert T, von Elverfeldt D, Knab F, Farr TD, Bernard R, Dopatka M, Rex A, Dirnagl U, Harms C, Boehm-Sturm P.
J Cereb Blood Flow Metab. 2017 Jan 1:271678X17726635. doi: 10.1177/0271678X17726635. [Epub ahead of print]
PMID: 28829217   

Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.
Boehm-Sturm P, Haeckel A, Hauptmann R, Mueller S, Kuhl CK, Schellenberger EA.
Radiology. 2018 Feb;286(2):537-546. doi: 10.1148/radiol.2017170116. Epub 2017 Sep 7.
PMID: 28880786             

Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment.
Boehm-Sturm P, Füchtemeier M, Foddis M, Mueller S, Trueman RC, Zille M, Rinnenthal JL, Kypraios T, Shaw L, Dirnagl U, Farr TD.
Stroke. 2017 Feb;48(2):468-475. doi: 10.1161/STROKEAHA.116.014394. Epub 2017 Jan 9.
PMID: 28070001

Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin.
Farr TD, Lai CH, Grünstein D, Orts-Gil G, Wang CC, Boehm-Sturm P, Seeberger PH, Harms C.
Nano Lett. 2014;14(4):2130-4. doi: 10.1021/nl500388h. Epub 2014 Mar 5.
PMID: 24564342

A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain.
Boehm-Sturm P, Aswendt M, Minassian A, Michalk S, Mengler L, Adamczak J, Mezzanotte L, Löwik C, Hoehn M.
Biomaterials. 2014 Feb;35(7):2218-26. doi: 10.1016/j.biomaterials.2013.11.085. Epub 2013 Dec 17.
PMID: 24355489

Vascular changes after stroke in the rat: a longitudinal study using optimized magnetic resonance imaging.
Boehm-Sturm P, Farr TD, Adamczak J, Jikeli JF, Mengler L, Wiedermann D, Kallur T, Kiselev V, Hoehn M. Contrast Media Mol Imaging. 2013 Sep-Oct;8(5):383-92. doi: 10.1002/cmmi.1534.
PMID: 23740808

Impetus

Animal models are essential for basic biomedical stroke research. Magnetic resonance imaging (MRI) plays a major role both in clinics and in animal models, as it can spatially and temporally illustrate important biological processes in the same subject. For this purpose, the CSB has established a dedicated laboratory for MRI in small animals. Research Group Boehm-Sturm mainly focuses on quantitative MRI. Using biophysical models, these MRIs try to establish a link between measured MRI parameters (e.g. change of water diffusion after a stroke) and important biological parameters (e.g. cellular engorgement) to increase the validity of the MRI for stroke diagnosis, but also for therapy evaluation.

Most important projects

MRI of recovery after stroke
The aim is to study several neuroprotective therapies using quantitative MRI in animal models.
The methods developed in this respect include:

  • Measurement of morphological changes in the brain using atlas registration (voxel-/deformation-based morphometry)
  • Mapping behavioural data onto imaging data, e.g. lesion-symptom mapping, to explore the structural causes of recovery after stroke
  • Measurement of tissue oxygen saturation using 19F MRI
  • Measurement of changes in the structural and functional connectivity using DTI and resting state MRI  


MRI of vascular function
The aim is to characterise the blood flow and vascular changes in animal models after a stroke using contrast-enhanced MRI (high-resolution angiography and DCE MRI). Investigations include the effects of therapies that stimulate vascular growth on the blood-brain barrier, cerebral blood flow and vascular density.


New contrast agents for MRI
We use animal models of stroke to investigate, for example:

  • Iron-based contrast agents for DCE MRI with a potentially improved long-term toxicity as an alternative to gadolinium-based contrast agents
  • Calcium-sensitive contrast agents for functional MRI
  • Iron oxide- and fluorine 19-based contrast agents to show inflammation

Further projects

  • MRI of changes in tissue morphology and structural and functional connectivity in post-traumatic stress disorder
  • MR Biomarker of Noise-Induced Hearing Loss – Investigation of Neurodegeneration, Connectivity and Neurotransmitter Metabolism in the Central Auditory System of the Mouse
  • "EPIC-3R": Experimental and Preclinical Imaging Cluster to Support 3R in Basic and Translational Research at Charité
  • "Strokevision": deep learning based segmentation of stroke lesions on MR images

Team

  • Dipl.-Ing. Susanne Mueller
    technical director Core Facility "7T experimental MRI"
     
  • Marco Foddis
    technical assistant
     
  • Dr. Stefan Paul Koch
    research associate
     
  • Ying Li
    PhD candidate
     
  • Víctor Giménez Esbrí
    PhD candidate
     
  • Jee Hye An, BSc
    student assistant